Abstract
This paper introduces max-characteristic functions (max-CFs), which are an offspring of multivariate extreme-value theory. A max-CF characterizes the distribution of a random vector in R d , whose components are nonnegative and have finite expectation. Pointwise convergence of max-CFs is shown to be equivalent to convergence with respect to the Wasserstein metric. The space of max-CFs is not closed in the sense of pointwise convergence. An inversion formula for max-CFs is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.