Abstract

The swaying motion of ships can always be generated due to the influence of complex sea conditions. A novel offshore Self-Stabilized system based on motion prediction and compensation control was studied. Firstly, an autoregressive model of ship motion exposed to various sea conditions was established, and the parameters of the model were initialized and updated by offline and online learning historical data. Using the autoregressive model with the acquired parameters, the prediction of the ship’s motion was achieved. Then, a Self-Stabilized system platform composed of six electric cylinders in parallel was designed, and the corresponding inverse kinematics were established. The corresponding controller using the result of motion prediction as the input was also proposed to counteract the extra motion variables of the ship. Various experiments, by simulating different sea conditions, can be carried out. The results show that the average error of the motion prediction was less than 1%. The maximum error of the self-stabilizing control was 1.6°, and the average error was stable within 0.7°. The Self-Stabilized system was able to effectively compensate for the rocking motion of ships affected by waves, which was of great significance for improving the maritime safety guarantee and the intelligent level of shipborne equipment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.