Abstract

A sensitive electrochemiluminescence (ECL) assay for microRNAs (miRNAs) based on a semiconductor nanomaterial sensitized with noble-metal Au nanoparticles (NPs) is successfully developed. TiO2 nanotubes (NTs) were equipped with Au NPs to obtain an enhanced ECL emitter. Then, an ECL assay for miRNA-21 was fabricated, which was based on the use of probe 2 DNA-functionalized Pt/PAMAM nanocomposites (NCs) assembled on the surface of Au/TiO2 NT conjugate via DNA hybridization between probe 1 DNA and capture DNA. The Pt/PAMAM NCs act as an ECL quencher of Au/TiO2 NTs via resonance energy transfer. After the binding of target miRNA-21 and the capture DNA, the Pt/PAMAM NCs were released and the ECL signal was recovered. An "off-on" ECL assay was achieved with a linear response from 0.01 to 10,000pM. Finally, this method has been validated to be sensitive and specific for miRNAs in human serum samples. The ECL enhancement strategy opens a new way for fabricating various sensitive biosensors. Graphical abstract A sensitive "off-on" electrochemiluminescence analysis method was developed, which combined Au NP-enhanced ECL emission of TiO2 nanotubes and an efficient energy-transfer system between Au/TiO2 nanotubes and Pt/PAMAM nanocomposites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call