Abstract
Many mitochondria-related diseases are associated with the mutation of mitochondrial DNA (mtDNA). Therefore, visualizing its dynamics in live cells is essential for the understanding of the function of mtDNA transcription and translation. By employing carbazole as the framework and designing a module for DNA minor-groove binding, here we have developed a novel fluorescent probe with a large Stokes shift (λab = 480 nm and λem = 620 nm), CNQ, for mtDNA detection and visualization. It is almost nonfluorescent in PBS buffer and exhibits 182-fold enhancement in fluorescence within 20 s after the application of mtDNA in the solution, with a detection limit of 55.1 μg/L. Using dual-color Hessian-structured illumination microscopy, we have demonstrated that CNQ-labeled mtDNA structures are distinct from those labeled by TFAM-EGFP. Finally, we have used two-photon confocal scanning microscopy (λex = 850 nm) to monitor the nondestructive doxorubicin-induced mtDNA damage in live cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.