Abstract

In this work, an intelligent and versatile electrochemical biosensor was constructed to detect two types of biomarkers by utilizing “off-on-off” switching. Firstly, human apurinic/apyrimidinic endonuclease1(APE1) mediated specific cleavage of the AP site, initiating activation DNAzyme and entropy-driven catalytic (EDC) reaction. Subsequently, large amounts of ferrocene labeled single-stranded DNA was released and captured with a remarkable electrochemical signal, achieving “off-on” state. In the presence of microRNA 21(miRNA-21), the DNA/RNA heteroduplexes were formed and cleaved by duplex-specific nuclease (DSN) with recovery the target miRNA-21, causing the current suppression in an “on-off” state. This sensor achieved highly sensitive detection of APE1 and miRNA-21 with a detection limit of 2.5 mU·mL−1 and 1.33 × 10−20 M, respectively, and also exhibited good selectivity, reproducibility and stability. Moreover, this proposed biosensor made it possible to realize analysis of multiple types of biomarkers on a single sensor, which improved utilization and analysis efficiency compared to traditional sensors. This study might open a new avenue to design multifunctional sensing platform for biological research and early disease diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call