Abstract

Fluorescence analysis has attracted much attention due to its rapidity and sensitivity. The present work describes a novel fluorescence detection method for acid phosphatase (ACP) on the basis of inner-filter effect (IFE), where MnO2 nanosheets (MnO2 NSs) and vitamin B2 (VB2) are served as absorbers and fluorophores, respectively. In the absence of ACP, the absorption band of MnO2 NSs overlaps well with the excitation band of VB2, resulting in effective IFE and inhibition of VB2 fluorescence. In the presence of ACP, 2-phospho-L-ascorbic acid trisodium salt (AAP) is hydrolyzed to generate ascorbic acid (AA), which efficiently trigger the reduction of MnO2 NSs into Mn2+ ions, causing the weakening of the MnO2 NSs absorption band and the recovery of VB2 fluorescence. Further investigation indicates that the fluorescence recovery degree of VB2 increases with the increase of ACP concentration. Under selected experimental conditions, the proposed method can achieve sensitive detection of ACP in the ranges of 0.5–4.0 mU/mL and 4.0–15 mU/mL along with a limit of detection (LOD) as low as 0.14 mU/mL. Finally, this method was successfully applied for the detection of ACP in human serum samples with satisfactory recoveries in the range of 95.0 %-108 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call