Abstract

Diagonistic dyspraxia (DD) is a behavioural disorder encountered in split-brain subjects in which the left arm acts against the subject’s will, deliberately counteracting what the right arm does. We report here an oculomotor and computational study of a patient with a long lasting form of DD. A first series of oculomotor paradigms revealed marked and unprecedented saccade impairments. We used a computational model in order to provide information about the impaired decision-making process: the analysis of saccade latencies revealed that variations of decision times were explained by adjustments of response criterion. This result and paradoxical impairments observed in additional oculomotor paradigms allowed to propose that this adjustment of the criterion level resulted from the co-existence of counteracting oculomotor programs, consistent with the existence of antagonist programs in homotopic cortical areas. In the intact brain, trans-hemispheric inhibition would allow suppression of these counter programs. Depending on the topography of the disconnected areas, various motor and/or behavioural impairments would arise in split-brain subjects. In motor systems, such conflict would result in increased criteria for desired movement execution (oculomotor system) or in simultaneous execution of counteracting movements (skeletal motor system). At higher cognitive levels, it may result in conflict of intentions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.