Abstract

In a previous paper the authors defined symplectic ``Local Gromov-Witten invariants'' associated to spin curves and showed that the GW invariants of a K\"ahler surface $X$ with $p_g>0$ are a sum of such local GW invariants. This paper describes how the local GW invariants arise from an obstruction bundle (in the sense of Taubes) over the space of stable maps into curves. Together with the results of our earlier paper, this reduces the calculation of the GW invariants of elliptic and general-type complex surfaces to computations in the GW theory of curves with additional classes: the Euler classes of the (real) obstruction bundles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.