Abstract

The paper addresses the obstacle avoidance motion planning problem for ground vehicles operating in uncertain environments. By resorting to set-theoretic ideas, a receding horizon control algorithm is proposed for robots modelled by linear time-invariant (LTI) systems subject to input and state constraints and disturbance effects. Sequences of inner ellipsoidal approximations of the exact one-step controllable sets are pre-computed for all the possible obstacle scenarios and then on-line exploited to determine the more adequate control action to be applied to the robot in a receding horizon fashion. The resulting framework guarantees Uniformly Ultimate Boundedness and constraints fulfilment regardless of any obstacle scenario occurrence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.