Abstract
The paper addresses the obstacle avoidance motion planning problem for ground vehicles operating in uncertain environments. By resorting to set-theoretic ideas, a receding horizon control algorithm is proposed for robots modelled by linear time-invariant (LTI) systems subject to input and state constraints and disturbance effects. Sequences of inner ellipsoidal approximations of the exact one-step controllable sets are pre-computed for all the possible obstacle scenarios and then on-line exploited to determine the more adequate control action to be applied to the robot in a receding horizon fashion. The resulting framework guarantees Uniformly Ultimate Boundedness and constraints fulfilment regardless of any obstacle scenario occurrence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.