Abstract

The Micro Unmanned Robot Observation Network (MURON) is a planned in-situ observation network over the surface of West Pacific Ocean, and it is designed to sample high spatial and temporal resolution observations of wind and mass fields over the ocean surface. The impacts of MURON observations for Tropical Cyclone (TC) intensity forecast are investigated using Observation System Simulation Experiments. The regional Ensemble Kalman Filter (EnKF) system of Gridpoint Statistical Interpolation is used with the Advanced Research version of the Weather Research and Forecasting model to conduct OSSEs for typhoon Haiyan (2013) while Haiyan goes through rapid intensification. Assimilating MURON observations improves the TC structure and intensity analysis and forecast. The intensity forecast is improved largely due to the correction of initial vorticity and vertical transport of mass flux. The improvement of intensity forecast is attributed largely to the assimilated MURON wind observations when Haiyan is at the tropical disturbance stage, and then by the MURON mass observations when Haiyan enters the tropical storm stage. In addition, our results show that the quality of moisture analysis is sensitive to the choice of the moisture control variable (CV) in the EnKF system. Using the default pseudo relative humidity (PRH) as the moisture CV degrades the accuracy of the moisture analysis. This is likely due to the neglect of updated temperature field during the nonlinear conversion from the PRH CV to the mixing ratio variable and due to the larger deviation of the PRH from Gaussian distribution. The use of mixing ratio moisture CV mitigates these problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call