Abstract

An urban railway train is a braking power-distributed system consisting of multiple carriages, which is becoming a powerful transportation tool to alleviate traffic congestion within cities as well as across cities. It is critical to control an urban railway train synchronously for improving braking performances, but challenging to be achieved due to strong coupling, unknown dynamics, and disturbances. This paper proposes an observer-driven distributed consensus braking control method for an urban railway train. Specifically, according to the data intersection among carriages, a distributed consensus braking controller is designed to make the velocity of each carriage converge to the desired braking curve. A sliding mode disturbance observer is then developed to estimate the non-linear coupling force and disturbances. The estimation value is utilized to compensate for the distributed consensus braking control law. Moreover, the potential fields are introduced to guarantee that the distances between any two neighbouring carriages are stabilized in a safe range. The effectiveness of the developed control strategy is firstly authenticated via the Lyapunov stability theory and then validated via numerical comparative simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.