Abstract

SummaryThe present paper addresses an observer‐based output feedback robust model predictive control for the linear parameter varying system with bounded disturbance and noise subject to input and state constraints. The main contribution is that the on‐line convex optimization problem not only simultaneously optimizes the observer and controller gains to stabilize the augmented closed‐loop system but also incorporates the refreshment of bounds of the estimation error set. The optimization problem steers the nominal augmented closed‐loop system to converge to the origin, and the real augmented closed‐loop system bounded within robust positive invariant set converges to a neighborhood of the origin such that recursive feasibility of the optimization and robust stability of the controlled system are ensured. Two numerical examples are given to illustrate the effectiveness of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.