Abstract
Due to the hostile marine environment, there will inevitably be unpredictable factors during the operation of unmanned underwater vehicles, including changes in ocean currents, hull dimensions, and velocity measurement uncertainties. An improved finite-time adaptive tracking control issue is considered for autonomous underwater vehicles (AUVs) with uncertain dynamics, unknown external disturbances, and unavailable speed information. A state observer is designed to estimate the position and velocity of the vehicle via a neural network (NN) approach. The NN is used to estimate uncertainties and external disturbances. A finite-time controller is designed via backstepping and command filter techniques. A multi-input multi-output (MIMO) filter for AUVs is established, and the corresponding MIMO filter compensation signal is constructed to eliminate the effect of filtering error. All the signals of the closed-loop system are proved to be finite-time bounded. An example with comparison is given to show the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.