Abstract
AbstractA Markovian stochastic model is developed for studying the propagation of the Madden‐Julian Oscillation (MJO). This model represents the daily changes in real time multivariate MJO (RMM) indices as random functions of their current state and background conditions. The probability distribution function of the RMM changes is obtained using a machine learning algorithm trained to maximize MJO forecast skills using observed daily indices of RMM and different modes of variability. Skillful forecasts are obtained for lead times between 8 and 27 days. Large ensemble simulations by the stochastic model show that with monsoonal changes in the background state, MJO propagation across the Maritime Continent (MC) is most likely to be disrupted in boreal spring and summer when MJO events propagate from favorable conditions over the Indian Ocean to unfavorable ones over the MC, and predictability is higher during spring and summer when MJO activity is away from the MC region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.