Abstract

AbstractHourly rainfall from automatic weather stations and reanalysis data from MERRA-2 are used to investigate the diurnal variation of precipitation in Hong Kong, a site along the southeast China coast with strong interactions between the monsoonal circulation and the land–sea breeze. The precipitation in Hong Kong is characterized by a spatially uniform diurnal cycle with the peak at about 0800 local time (LT), with rather weak dependence on local terrain. Precipitation unrelated to tropical cyclones (TCs) dominates the diurnal variation of precipitation, especially in the summer. The diurnal cycle exhibits a notable seasonal dependence, with the strongest signal in the summer. The morning peak of precipitation over Hong Kong is coincident with deep rising motion, linking to near-surface convergence and overlying weak divergence. The convergence may be attributed to the prevalence of the southerly monsoonal flow over the South China Sea (SCS) and to the northerly land breeze induced by the land–sea thermal contrast in the morning. The overlying weak divergence could be ascribed to the nocturnal–early morning acceleration of southerly flow over southeast China. Linked to the inverse relationship between monsoon intensity and the land–sea thermal contrast, the diurnal cycle of precipitation is strengthened when the SCS monsoon is active and weakened when the land–sea thermal contrast is high. Both the cloud-top radiative cooling effect and the enhanced radiative cooling over inland cloud-free areas also play roles in the development of the morning rainfall peak over Hong Kong.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call