Abstract
The electromigration (EM) of a solder joint under high-current stressing causes damage and reduces its service life. Previous studies have suggested that EM-induced cracks typically initiate at the cathode corner where the electron current enters, and propagate across the intermetallic compound and solder interface. Herein, however, another type of propagation is experimentally demonstrated whereby cracks initiate from voids located in the middle of the interface and propagate in two directions. This phenomenon was investigated further with finite element simulations. These simulations showed that, when the solder corners become rounded via the wetting phenomenon that occurs during solder reflow, the current density around the voids is greater than that at the solder corner. Under these conditions, cracking will initiate from the side of an existing void, instead of the corner from where electron current flows into the solder ball, when tensile stress is present at the void and compressive stress at the electron current entrance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.