Abstract

In a large class of rate-independent and rate-dependent elastic-plastic constitutive equations the elasticity is modeled in hypoelastic form, with the stress rate being taken as the Jaumann derivative, so as to make the constitutive model properly frame-indifferent or objective. Here, we present a fully-implicit, stable time-integration procedure for implementing such constitutive models in displacement-based finite element procedures. The numerical procedure preserves the very desirable feature of incremental objectivity. The overall procedure is a generalization of the well known “radial-return” algorithm of classical rate-independent plasticity, and it is therefore well suited for implementation in large-scale finite element codes. As an example, we have implemented the time-integration procedure in the finite element code ABAQUS. To check the incremental objectivity, accuracy, and stability of the algorithm some representative problems are solved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.