Abstract

This paper explores hierarchical clustering in the case where pairs of points have dissimilarity scores (e.g. distances) as a part of the input. The recently introduced objective for points with dissimilarity scores results in every tree being a ½ approximation if the distances form a metric. This shows the objective does not make a significant distinction between a good and poor hierarchical clustering in metric spaces.Motivated by this, the paper develops a new global objective for hierarchical clustering in Euclidean space. The objective captures the criterion that has motivated the use of divisive clustering algorithms: that when a split happens, points in the same cluster should be more similar than points in different clusters. Moreover, this objective gives reasonable results on ground-truth inputs for hierarchical clustering.The paper builds a theoretical connection between this objective and the bisecting k-means algorithm. This paper proves that the optimal 2-means solution results in a constant approximation for the objective. This is the first paper to show the bisecting k-means algorithm optimizes a natural global objective over the entire tree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.