Abstract

This study describes an objective approach to deriving the clinical performance of autoverification rules to inform laboratory practice when implementing them. Anonymized historical laboratory data for 12 biochemistry measurands were collected and Box-Cox-transformed to approximate a Gaussian distribution. The historical laboratory data were assumed to be error-free. Using the probability theory, the clinical specificity of a set of autoverification limits can be derived by calculating the percentile values of the overall distribution of a measurand. The 5th and 95th percentile values of the laboratory data were calculated to achieve a 90% clinical specificity. Next, a predefined tolerable total error adopted from the Royal College of Pathologists of Australasia Quality Assurance Program was applied to the extracted data before subjecting to Box-Cox transformation. Using a standard normal distribution, the clinical sensitivity can be derived from the probability of the Z-value to the right of the autoverification limit for a one-tailed probability and multiplied by two for a two-tailed probability. The clinical sensitivity showed an inverse relationship with between-subject biological variation. The laboratory can set and assess the clinical performance of its autoverification rules that conforms to its desired risk profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.