Abstract

The present study presents a non-surgical approach to assess colonic mechanical sensitivity in mice using colonometry, a technique in which colonic stretch-reflex contractions are measured by recording intracolonic pressures during saline infusion into the distal colon in a constant rate. Colonometrical recording has been used to assess colonic function in healthy individuals and patients with neurological disorders. Here we found that colonometry can also be implemented in mice, with an optimal saline infusion rate of 1.2 mL/h. Colonometrograms showed intermittent pressure rises that was caused by periodical colonic contractions. In the sceneries of colonic hypersensitivity that was generated post 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colonic inflammation, following chemogenetic activation of primary afferent neurons, or immediately after noxious stimulation of the colon by colorectal distension (CRD), the amplitude of intracolonic pressure (AICP) was markedly elevated which was accompanied by a faster pressure rising (ΔP/Δt). Colonic hypersensitivity-associated AICP elevation was a result of the enhanced strength of colonic stretch-reflex contraction which reflected the heightened activity of the colonic sensory reflex pathways. The increased value of ΔP/Δt in colonic hypersensitivity indicated a lower threshold of colonic mechanical sensation by which colonic stretch-reflex contraction was elicited by a smaller saline infusion volume during a shorter period of infusion time. Chemogenetic inhibition of primary afferent pathway that was governed by Nav1.8-expressing cells attenuated TNBS-induced up-regulations of AICP, ΔP/Δt, and colonic pain behavior in response to CRD. These findings support that colonometrograms can be used for analysis of colonic pain in mice.

Highlights

  • Colonometry in human was first described by Joltrain and colleagues a century ago [1]

  • At 0.4 mL/h saline infusion rate, the colonic stretch-reflex contractions generated small amplitude of intracolonic pressure (AICP) (Fig 2A) which was difficult to be extracted from the baseline and from the artifacts caused by respiratory excursions

  • We analyzed the colonometrograms for the amplitude of intracolonic pressures (AICP), the rapidness of pressure rising (Δp/Δt), and the colonic inter-contraction intervals (ICI) to determine colonic function in healthy and diseases

Read more

Summary

Introduction

Colonometry in human was first described by Joltrain and colleagues a century ago [1]. A solution (e.g., saline) is infused into the colon continuously and in a constant rate, which results in “stretch-reflex” peristaltic contraction of the colon for periodic attempts

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.