Abstract
Real scenes are composed of multiple points possessing distinct characteristics. Selectively, only part of the scene undergoes scrutiny at a time, and the mechanism responsible for this task is named selective visual attention. Spatial location with the highest contrast might highlight from scene reaching level of awareness (bottom-up attention). On the other hand, attention may also be voluntarily directed to a particular object in the scene (object-based attention), which requires the recognition of a specific target (top-down modulation). In this paper, a new visual selection model is proposed, which combines both early visual features and object-based visual selection modulations. The possibility of the modulation regarding specific features enables the model to be applied to different domains. The proposed model integrates three main mechanisms. The first handles the segmentation of the scene allowing the identification of objects. In the second one, the average of saliency of each object is computed, which provides the modulation of the visual attention for one or more features. Finally, the third builds the object-saliency map, which highlights the salient objects in the scene. We show that top-down modulation has a stronger effect than bottom-up saliency when a memorized object is selected, and this evidence is clearer in the absence of any bottom-up clue. Experiments with synthetic and real images are conducted, and the obtained results demonstrate the effectiveness of the proposed approach for visual selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.