Abstract

This paper describes an object-oriented simulation approach for the design of a flexible manufacturing system that allows the implementation of control logic during the system design phase. The object-oriented design approach is built around the formal theory of supervisory control based on Finite Automata. The formalism is used to capture inter-object relationships that are difficult to identify in the object-oriented design approach. The system resources are modeled as object classes based on the events that have to be monitored for real-time control. Real-time control issues including deadlock resolution, resource failures in various modes of operation and recovery from failures while sustaining desirable logical system properties are integrated into the logical design for simulating the supervisory controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.