Abstract

Computational simulations of transcranial electrical stimulation (TES) are commonly utilized by the neurostimulation community, and while vastly different TES application areas can be investigated, the mathematical equations and physiological characteristics that govern this research are identical. The goal of this work was to develop a robust software framework for TES that efficiently supports the spectrum of computational simulations routinely utilized by the TES community and in addition easily extends to support alternative neurostimulation research objectives. Using well-established object-oriented software engineering techniques, we have designed a software framework based upon the physical and computational aspects of TES. The framework’s versatility is demonstrated with a set of diverse neurostimulation simulations that (i) reinforce the importance of using anisotropic tissue conductivities, (ii) demonstrate the enhanced precision of high-definition stimulation electrodes, and (iii) highlight the benefits of utilizing multigrid solution algorithms. Our approaches result in a framework that facilitates rapid prototyping of real-world, customized TES administrations and supports virtually any clinical, biomedical, or computational aspect of this treatment. Software reuse and maintainability are optimized, and in addition, the same code can be effortlessly augmented to provide support for alternative neurostimulation research endeavors.

Highlights

  • Transcranial electrical stimulation (TES) is a collection of noninvasive neurostimulation techniques that strategically modulate activity in regions of the brain with low magnitude electric current delivered through electrodes positioned on the scalp surface

  • These discrepancies extend to the gray matter (GM) and white matter (WM) interiors

  • These results reinforce the importance of using anisotropic conductivities to most accurately model TES administrations and in addition showcase the capabilities of the object-oriented framework to support both isotropic and anisotropic TES simulations

Read more

Summary

Introduction

Transcranial electrical stimulation (TES) is a collection of noninvasive neurostimulation techniques that strategically modulate activity in regions of the brain with low magnitude electric current delivered through electrodes positioned on the scalp surface. Forms of TES include the commonly used transcranial direct current stimulation (tDCS), as well as transcranial alternating current stimulation (tACS) [1]. The use of numerous smaller sized electrodes, termed high-definition tDCS (HD-tDCS), has emerged as a form of TES that enhances electrical current focality [2, 3]. Clinical and biomedical research continue to demonstrate the capabilities of TES as a medical treatment. TES has shown to alleviate symptoms of psychiatric disorders including depression [7, 8] and schizophrenia [9,10,11]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call