Abstract
Simulation-based optimization can assist green building design by overcoming the drawbacks of trial-and-error with simulation alone. This paper presents an object-oriented framework that addresses many particular characteristics of green building design optimization problems such as hierarchical variables and the coupling with simulation programs. The framework facilitates the reuse of code and can be easily adapted to solve other similar optimization problems. Variable types supported include continuous variables, discrete variables, and structured variables, which act as switches to control a number of sub-level variables. The framework implements genetic algorithms to solve (1) unconstrained and constrained single objective optimization problems, and (2) unconstrained multi-objective optimization problems. The application of this framework is demonstrated through a case study which uses a multi-objective genetic algorithm to explore the trade-off relationship between life-cycle cost and life-cycle environmental impacts for a green building design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.