Abstract
A new algorithm is presented for land-fog detection using daytime imagery from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) data. MODIS images constitute an ideal data source for fog detection due to their outstanding spatial and spectral resolution. In this article, a parameter named the Normalized Difference Fog Index (NDFI) is proposed, based on analysing the spectral character of fog and cloud by utilizing the Streamer radiative-transfer model and MODIS data. A mean-shift segmentation method is used to preliminary segment the NDFI image, and a full lambda-schedule algorithm is then iteratively applied to merge adjacent segments based on the combination of spectral and spatial information. Then, some properties (e.g. mean value of brightness temperature) are calculated for each segment, and each object is identified as either fog or not. The algorithm's performance is evaluated against ground-based measurements over China in winter, and the algorithm is proved to be effective in detecting fog accurately based on three cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.