Abstract
A method based on object kinetic Monte Carlo that can account for segregation and precipitation in metallic alloys in the presence of both vacancies and self-interstitials is presented. Here the model has been applied specifically to FeCr alloys, but could be used for other alloys with proper parametrization. The model is based on the division of the simulation box into cells where only the local concentration of the alloy is considered and not the explicit location of each alloy atom, in a mean field type of approach. This concentration, together with those of neighboring cells, is used to bias defect migration taking into account the proper thermodynamics of the alloy at hand and the stiffness coefficient to include neighboring effects. The novelty of this implementation is, among other things, the explicit description of mixed pairs of point defects with the alloy element: vacancy-Cr (VCr) and self-interstitial-Cr (ICr) whenever necessary. This explicit description allows the temperature dependence of defect evolution to be correctly reproduced. In this paper we present the model in detail for the particular case of processes that take place in the presence of vacancies, to show the robustness and applicability of this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.