Abstract

An intelligent, accurate, and powerful object detection system is required for automated driving systems to keep these vehicles aware of their surrounding objects. Thus, vehicles adapt their speed and operations to avoid crashing with the existing objects and follow the driving rules around the existence of emergency vehicles and installed traffic signs. The objects considered in this work are summarized by regular vehicles, big trucks, emergency vehicles, pedestrians, bicycles, traffic lights, and traffic signs on the roadside. Autonomous vehicles are equipped with high-quality sensors and cameras, LiDAR, radars, and GPS tracking systems that help to detect existing objects, identify them, and determine their exact locations. However, these tools are costly and require regular maintenance. This work aims to develop an intelligent object classification mechanism for autonomous vehicles. The proposed mechanism uses machine learning technology to predict the existence of investigated objects over the road network early. We use different datasets to evaluate the performance of the proposed mechanism. Accuracy, Precision, F1-Score, G-Mean, and Recall are the measures considered in the experiments. Moreover, the proposed object classification mechanism is compared to other selected previous techniques in this field. The results show that grouping the dataset based on their mobility nature before applying the classification task improved the results for most of the algorithms, especially for vehicle detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call