Abstract

The diffusion of both water and surfactant components in aqueous solutions of the nonionic surfactant "C12E6"--which includes hexagonal, cubic, lamellar, and micellar mesophases--has been studied by pulsed-field-gradient NMR. Diffusion coefficients were measured in unaligned samples in all of these phases. They were also obtained in the hexagonal and lamellar phases in oriented monodomain samples that were aligned by slow cooling from the micellar phase in an 11.7 T magnet. Measured water and soap diffusion coefficients in the NMR-isotropic cubic and (high-water-content) micellar phases as well as diffusion anisotropy measurements in the magnetically aligned hexagonal phase were quantitatively consistent with the constituent structures of these phases being identical surfactant cylinders, with only the fraction of surface-associated water varying with the water-soap molar ratio. The values of the water and soap diffusion coefficients in the oriented lamellar phase suggest an increase in defects and obstructions to soap diffusion as a function of increasing water content, while those in the low-water-content micellar phase rule out the presence of inverse micelles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call