Abstract

Intracellular recording from lumbar motoneurons of the neonatal rat spinal cord in vitro was used to study how recently developed non-peptide antagonists such as SR-140333 and SR-48698, known to block distinct subtypes of tachykinin receptors peripherally, might affect synaptic transmission elicited by electrical stimulation of dorsal root fibres. SR-140333 (1 microM) preferentially antagonized responses mediated by an exogenously applied agonist acting on the NK1 receptor subclass, while SR-48968 (0.5 microM) preferentially reduced responses mediated by an exogenously applied agonist acting on the NK2 receptor subclass. SR-48968 did not affect fast or slow excitatory postsynaptic potentials (EPSPs) or 'wind-up' responses induced by repetitive, low-frequency stimulation (mimicking certain types of nociceptive input); binding studies using this radiolabelled ligand disclosed specific binding activity (21 fmol/mg protein) selectively displaced by an NK2 receptor agonist. SR-140333 reduced the late component of fast and slow EPSPs, and of wind-up. Pharmacological block of ionotropic glutamate receptors abolished all dorsal root-evoked EPSPs. In comparison to glutamate receptor blockers, SR-140333 was a weaker antagonist of slow synaptic responses, though it displayed preferential antagonism towards some components of the wind-up phenomenon. The present results provide evidence obtained with a novel NK1 antagonist that a neuropeptide (presumably substance P), although not directly released by primary afferents onto motoneurons, is a neurotransmitter (acting via NK1 receptors) in the pathway mediating slow synaptic responses of motoneurons, and is presumably involved in signalling nociceptive inputs from the periphery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call