Abstract

NDVI is an important parameter for environmental assessment and precision agriculture that well-describes the status of vegetation. Nevertheless, the clouds in optical images often result in the absence of NDVI information at key growth stages. The integration of SAR and optical image features will likely address this issue. Although the mapping of different data sources is complex, the prosperity of deep learning technology provides an alternative approach. In this study, the double-attention RNN architecture based on the recurrent neural network (RNN) and attention mechanism is proposed to retrieve NDVI data of cloudy regions. Overall, the NDVI is retrieved by the proposed model from two aspects: the temporal domain and the pixel neighbor domain. The performance of the double-attention RNN is validated through different cloud coverage conditions, input ablation, and comparative experiments with various methods. The results conclude that a high retrieval accuracy is guaranteed by the proposed model, even under high cloud coverage conditions (R2 = 0.856, RMSE = 0.124). Using SAR images independently results in poor NDVI retrieval results (R2 = 0.728, RMSE = 0.141) with considerable artifacts, which need to be addressed with auxiliary data, such as IDM features. Temporal and pixel neighbor features play an important role in improving the accuracy of NDVI retrieval (R2 = 0.894, RMSE = 0.096). For the missing values of NDVI data caused by cloud coverage, the double-attention RNN proposed in this study provides a potential solution for information recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call