Abstract

N-nitroso-containing small molecules, such as the bacterial natural product streptozotocin, are prominent carcinogens1,2 and important cancer chemotherapeutics3,4. Despite this functional group’s significant impact on human health, dedicated enzymes involved in N-nitroso assembly have not been identified. Here, we describe a metalloenzyme from streptozotocin biosynthesis (SznF) that catalyzes an oxidative rearrangement of the guanidine group of Nω-methyl-L-arginine to generate an N-nitrosourea product. Structural characterization and mutagenesis of SznF uncovered two separate active sites that promote distinct steps in this transformation using different iron-containing metallocofactors. The discovery of this biosynthetic reaction, which has little precedent in enzymology or organic synthesis, expands the catalytic capabilities of non-heme iron-dependent enzymes to include N–N bond formation. We find biosynthetic gene clusters encoding SznF homologs are widely distributed among bacteria, including environmental organisms, plant symbionts, and human pathogens, suggesting an unexpectedly diverse and uncharacterized microbial reservoir of bioactive N-nitroso metabolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.