Abstract

By employing the N-barrier method developed in C.-C. Chen and L.-C. Hung, 2016 ([ 6 ]), we establish a new N-barrier maximum principle for diffusive Lotka-Volterra systems of two competing species. To this end, this gives rise to the N-barrier maximum principle for a second-order elliptic equation involving two distinct unknown functions and a quadratic nonlinearity. An immediate consequence of the N-barrier maximum principle is an a priori estimate for the total populations of the two species. As an application of this maximum principle, we show under certain conditions the existence and nonexistence of traveling waves solutions for systems of three competing species. In addition, new \begin{document}$(1, 0, 0)$\end{document} - \begin{document}$(u^{*}, v^{*}, 0)$\end{document} waves are given in terms of the tanh function, provided that the system's parameters satisfy certain conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.