Abstract

The metal anode is the pivotal component for advanced sodium-metal batteries such as Na-O2 batteries. Designing a 3D confinement scaffold is a promising strategy for constructing dendrite-free sodium-metal anodes; however, cycling stability at a large current density (>10 mA cm-2 ) is still difficult to realize. Herein, the design of new lightweight and fibrous hydroxylated Ti3 C2 (h-Ti3 C2 ) MXene based scaffolds with stepped sodiophilic gradient structure (h-M-SSG) is reported, and its thickness can be controlled (80-250µm). The sodiophilic gradient structure (adjusted by h-Ti3 C2 ) can effectively induce sodium ions to preferentially deposit at the bottom of the scaffold, thus inhibiting dendrite growth. h-M-SSG/Na-based symmetrical batteries exhibit a low polarization voltage and long cycling life at a high current density (40 mA cm-2 ) and a high cut-off capacity (40 mAh cm-2 ). Moreover, a Na-O2 battery with an h-M-SSG/Na anode exhibits a low potential gap of 0.137V after 45 cycles at 1000 mA g-1 and 1000 mAh g-1 . This deposition-regulation strategy would inspire the design of 3D scaffolds for high-performance sodium-metal-anode-based batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.