Abstract
This paper proposes a Markov random field (MRF) model-based method for unsupervised segmentation of images consisting of multiple textures. This method uses a hierarchical MRF with two layers, the first layer representing an unobservable region image and the second layer representing multiple textures which cover each region. This method is an iterative method based on the framework of the expectation and maximization (EM) method. We make use of an approximation for the Baum function in the expectation step. This reduces the parameter estimation to the maximum likelihood (ML) estimation given the current estimate of the region image. An estimation of the region image (image segmentation) is carried out by a deterministic relaxation method proposed by us.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.