Abstract

This paper presents a new model reference adaptive system (MRAS) speed observer for high-performance field-oriented control induction motor drives based on adaptive linear neural networks. It is an evolution and an improvement of an MRAS observer presented in the literature. This new MRAS speed observer uses the current model as an adaptive model discretized with the modified Euler integration method. A linear neural network has been then designed and trained online by means of an ordinary least-squares (OLS) algorithm, differently from that in the literature which employs a nonlinear backpropagation network (BPN) algorithm. Moreover, the neural adaptive model is employed here in prediction mode, and not in simulation mode, as is usually the case in the literature, with a consequent quicker convergence of the speed estimation, no need of filtering the estimated speed, higher bandwidth of the speed loop, lower estimation errors both in transient and steady-state operation, better behavior in zero-speed operation at no load, and stable behavior in field weakening. A theoretical analysis of some stability issues of the proposed observer has also been developed. The OLS MRAS observer has been verified in numerical simulation and experimentally, and in comparison with the BPN MRAS one presented in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.