Abstract

This article presents a model predictive control based obstacle avoidance algorithm for autonomous ground vehicles in unstructured environments. The novelty of the algorithm is the simultaneous optimization of speed and steering without a priori knowledge about the obstacles. Obstacles are detected using a planar light detection and ranging sensor and a multi-phase optimal control problem is formulated to optimize the speed and steering commands within the detection range. Acceleration capability of the vehicle as a function of speed, and stability and handling concerns such as tire lift-off are taken into account as constraints in the optimization problem, whereas the cost function is formulated to navigate the vehicle as quickly as possible with smooth control commands. Thus, a safe and quick navigation is enabled without the need for a preloaded map of the environment. Simulation results show that the proposed algorithm is capable of navigating the vehicle through obstacle fields that cannot be cleared with steering control alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call