Abstract

The transactive response DNA binding protein (TDP-43) proteinopathies describe a clinico-pathological spectrum of multi-system neurodegeneration that spans motor neuron disease/amyotrophic lateral sclerosis (MND/ALS) and frontotemporal lobar degeneration (FTLD). We have identified four male patients who presented with the clinical features of a pure MND/ALS phenotype (without dementia) but who had distinctive cortical and cerebellar pathology that was different from other TDP-43 proteinopathies. All patients initially presented with weakness of limbs and respiratory muscles and had a family history of MND/ALS. None had clinically identified cognitive decline or dementia during life and they died between 11 and 32 months after symptom onset. Neuropathological investigation revealed lower motor neuron involvement with TDP-43-positive inclusions typical of MND/ALS. In contrast, the cerebral pathology was atypical, with abundant star-shaped p62-immunoreactive neuronal cytoplasmic inclusions in the cerebral cortex, basal ganglia and hippocampus, while TDP-43-positive inclusions were sparse. This pattern was also seen in the cerebellum where p62-positive, TDP-43-negative inclusions were frequent in granular cells. Western blots of cortical lysates, in contrast to those of sporadic MND/ALS and FTLD-TDP, showed high p62 levels and low TDP-43 levels with no high molecular weight smearing. MND/ALS-associated SOD1, FUS and TARDBP gene mutations were excluded; however, further investigations revealed that all four of the cases did show a repeat expansion of C9orf72, the recently reported cause of chromosome 9-linked MND/ALS and FTLD. We conclude that these chromosome 9-linked MND/ALS cases represent a pathological sub-group with abundant p62 pathology in the cerebral cortex, hippocampus and cerebellum but with no significant associated cognitive decline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.