Abstract

Land use/land cover change (LUCC) detection based on optical remote-sensing images is an important research direction in the field of remote sensing. The key to it is to select an appropriate data source and detection method. In recent years, the continuous expansion of construction land in urban areas has become the main reason for the increase in LUCC demand. However, due to the complexity and diversity of land-cover types, it is difficult to obtain high-precision classification results. In this article, a 12-month time series NDVI (Normalized Difference Vegetation Index) image of the study area was generated based on the high spatial and temporal resolution PlanetScope satellite images. According to the time series NDVI image, representative land-cover samples were selected, and the changed land samples were selected at the same time. This method could directly obtain the LUCC detection results of the study area through land-cover classification. First, Maximum Likelihood Classification (MLC), a classical machine-learning method, was used for supervised classification, and the samples needed for deep learning were selected according to the classification results. Then, the U-Net model, which can fully identify and explore the deep semantic information of the time series NDVI image, was used for land classification. Finally, this article made a comparative analysis of the two classification results. The results demonstrate that the overall classification accuracy based on time series NDVI is significantly higher than that of single-scene NDVI and mean NDVI. The LUCC detection method proposed in this article can effectively extract changed areas. The overall accuracy of the MLC and U-Net model is 79.38% and 85.26%, respectively. Therefore, the deep-learning method can effectively improve the accuracy of land-cover classification and change detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call