Abstract
Road network traffic management and control are the key mechanisms to alleviate urban traffic congestion. With this study, we aimed to characterize the traffic flow state of urban road networks using the Macroscopic Fundamental Diagram (MFD) to support area traffic control. The core property of an MFD is that the network flow is maximized when network traffic stays at an optimal accumulation state. The property can be used to optimize the temporal and spatial distribution of traffic flow with applications such as gating control. MFD construction is the basis of these MFD-based applications. Although many studies have been conducted to construct MFDs, few studies are dedicated to improving the accuracy considering the reliability of different sources of data. To this end, we propose an MFD construction method using multi-source data based on Dempster–Shafer evidence (DS evidence) theory considering the reliability of different data sources. First, the MFD was constructed using VTD and CSD, separately. Then, the fused MFD was derived by quantifying the reliability of different sources of data for each MFD parameter based on DS evidence theory. The results under real data and simulated data show that the accuracy of the constructed MFDs was greatly improved considering the reliability of different data sources (the maximum MFD estimation error was reduced by 22.3%). The proposed method has the potential to support the evaluation of traffic operations and the optimization of signal control schemes for urban traffic networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.