Abstract

The architecture for the Beyond 3rd Generation (B3G) or 4th Generation (4G) wireless networks aims at integrating various heterogeneous wireless access networks. One of the major design issues is the support of vertical handoff. Vertical handoff occurs when a mobile terminal switches from one network to another (e.g., from wireless local area network to code-division multiple-access 1x radio transmission technology). The objective of this paper is to determine the conditions under which vertical handoff should be performed. The problem is formulated as a Markov decision process with the objective of maximizing the total expected reward per connection. The network resources that are utilized by the connection are captured by a link reward function. A signaling cost is used to model the signaling and processing load incurred on the network when vertical handoff is performed. The value iteration algorithm is used to compute a stationary deterministic policy. For performance evaluation, voice and data applications are considered. The numerical results show that our proposed scheme performs better than other vertical handoff decision algorithms, namely, simple additive weighting, the technique for order preference by similarity to ideal solution, and Grey relational analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.