Abstract
A nonhydrostatic atmospheric model was tested with the mountain waves over various bell-shaped mountains. The model is recently proposed by using the MCV (multimoment constrained finite volume) schemes with the height-based terrain following coordinate representing the topography. As discussed in our previous work, the model has some appealing features for atmospheric modeling and can be expected as a practical framework of the dynamic cores, which well balances the numerical accuracy and algorithmic complexity. The flows over the mountains of various half widths and heights were simulated with the model. The semianalytic solutions to the mountain waves through the linear theory are used to check the performance of the MCV model. It is revealed that the present model can accurately reproduce various mountain waves including those generated by the mountains with very steep inclination and is very promising for numerically simulating atmospheric flows over complex terrains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.