Abstract

In this paper we present a computationally efficient algorithm utilizing a fully or seminonlocal graph Laplacian for solving a wide range of learning problems in binary data classification and image processing. In their recent work [Multiscale Model. Simul., 10 (2012), pp. 1090--1118], Bertozzi and Flenner introduced a graph-based diffuse interface model utilizing the Ginzburg--Landau functional for solving problems in data classification. Here, we propose an adaptation of the classic numerical Merriman--Bence--Osher (MBO) scheme for minimizing graph-based diffuse interface functionals, like those originally proposed by Bertozzi and Flenner. We also make use of fast numerical solvers for finding eigenvalues and eigenvectors of the graph Laplacian. Various computational examples are presented to demonstrate the performance of our algorithm, which is successful on images with texture and repetitive structure due to its nonlocal nature. The results show that our method is multiple times more efficient than o...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.