Abstract
We consider an M[X]/G/1 retrial queue subject to breakdowns where the retrial time is exponential and independent of the number of customers applying for service. If a coming batch of customers finds the server idle, one of the arriving customers begins his service immediately and the rest joins a retrial group (called orbit) to repeat his request later; otherwise, if the server is busy or down, all customers of the coming batch enter the orbit. It is assumed that the server has a constant failure rate and arbitrary repair time distribution. We study the ergodicity of the embedded Markov chain, its stationary distribution and the joint distribution of the server state and the orbit size in steady-state. The orbit and system size distributions are obtained as well as some performance measures of the system. The stochastic decomposition property and the asymptotic behavior under high rate of retrials are discussed. We also analyse some reliability problems, the k-busy period and the ordinary busy period of our retrial queue. Besides, we give a recursive scheme to compute the distribution of the number of served customers during the k-busy period and the ordinary busy period. The effects of several parameters on the system are analysed numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.