Abstract
A new chemical kinetic model for the beta-delta transition and decomposition of LX-10 (95% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, 5% Viton A binder) is presented here. This model implements aspects of previous kinetic models but calibrates the model parameters to data sets of three experiments: differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and one-dimensional time to explosion (ODTX). The calibration procedure contains three stages: one stage uses open-pan DSC and TGA to develop a base reaction for formation of heavy gases, a second stage features closed-pan DSC to ascertain the autocatalytic behavior of reactant gases attacking the solid explosive, and a final stage adjusts the rate for the breakdown of heavy reactant gases using ODTX experimental data. The resultant model presents a large improvement in the agreement between simulated DSC and TGA results and their respective experiments while maintaining the same level of agreement with ODTX, scaled thermal explosion, and laser heating explosion times when compared to previous models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.