Abstract
This paper presents a fully automated low temperature co-fired ceramic (LTCC) based microfluidic system with an integrated electrochemical biosensing platform for the detection of cortisol. This paper presents the design, fabrication, integration and testing of the integrated 3D microfluidic system. The electrochemical immunosensor consists of microfabricated interdigitated Au electrodes, onto which cortisol antibodies are immobilized using a self-assembled monolayer (SAM) matrix of dithiobis(succinimidyl propionate) (DTSP). Finite element based simulation was used to optimize the fluid flow dynamics and washing efficiency required for immunosensing in the LTCC microfluidic assay chamber. Cortisol was used as a model analyte to demonstrate electrochemical immunosensing in a fully automated microfluidic system. Cortisol was detected in a linear range of 10pM–100nM at a sensitivity of 0.207μA/M using cyclic voltammetry (CV). This system establishes the basis for the development of a POC cortisol sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.