Abstract

Abstract This paper presents a long short-term memory (LSTM)-based ensemble learning approach for time-dependent reliability analysis. An LSTM network is first adopted to learn system dynamics for a specific setting with a fixed realization of time-independent random variables and stochastic processes. By randomly sampling the time-independent random variables, multiple LSTM networks can be trained and leveraged with the Gaussian process (GP) regression to construct a global surrogate model for the time-dependent limit state function. In detail, a set of augmented data is first generated by the LSTM networks and then utilized for GP modeling to estimate system responses under time-dependent uncertainties. With the GP models, the time-dependent system reliability can be approximated directly by sampling-based methods such as the Monte Carlo simulation (MCS). Three case studies are introduced to demonstrate the efficiency and accuracy of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call