Abstract

Level of blood and blood products in human body is very important. Therefor, managing supply of blood is critical issue in healthcare system specially when the system faced with high demand for the product. In natural disasters, demand for blood units increase sharply because of injuries. Hence, efficiency in blood supply chain management play a significant role in this situation in supplying blood for transfusion centers, it is vital to supply in right time to prevent from casualties. Present paper proposes an optimization model for designing blood supply chain network in case of an earthquake disaster. The proposed two-stage stochastic model is Programmed based on scenarios for earthquake in a populated mega-city. The designed network has three layers; first layer is donation areas, the second layer consists distribution centers and facilities and the last layer is transfusion centers. In proposed two-stage stochastic optimization model, decisions of locating permanent collection facilities and amount of each blood type pre-inventory are made in first stage and operation decisions that have dependent on possible scenarios are made in second stage. The model also considers the possibility of blood transfusion between different blood types and its convertibility to blood derivatives regarding medical requirements. In order to solve the proposed two-stage stochastic model, L-shaped algorithm, an efficient algorithm to solve scenario based stochastic models, has been used. In addition, application of the model and the algorithm tests with real data of likely earthquake in Tehran mega city (Densest city of Iran).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call