Abstract
We introduce an Lq(Lp)-theory for the semilinear fractional equations of the type(0.1)∂tαu(t,x)=aij(t,x)uxixj(t,x)+f(t,x,u),t>0,x∈Rd. Here, α∈(0,2), p,q>1, and ∂tα is the Caupto fractional derivative of order α. Uniqueness, existence, and Lq(Lp)-estimates of solutions are obtained. The leading coefficients aij(t,x) are assumed to be piecewise continuous in t and uniformly continuous in x. In particular aij(t,x) are allowed to be discontinuous with respect to the time variable. Our approach is based on classical tools in PDE theories such as the Marcinkiewicz interpolation theorem, the Calderon–Zygmund theorem, and perturbation arguments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.