Abstract

We develop an Lp analog to AAK theory on the unit circle that interpolates continuously between the case p=∞, which classically solves for best uniform meromorphic approximation, and the case p=2, which is equivalent to H2-best rational approximation. We apply the results to the uniqueness problem in rational approximation and to the asymptotic behaviour of poles of best meromorphic approximants to functions with two branch points. As pointed out by a referee, part of the theory extends to every p∈[1, ∞] when the definition of the Hankel operator is suitably generalized; this we discuss in connection with the recent manuscript by V. A. Prokhorov, submitted for publication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.