Abstract
Scheduling algorithms place a crucial role in MapReduce systems. Several recent scheduling algorithms, however, are all under Job-Task scheduling model which makes task scheduling confined, leading to poor task scheduling preference such as data locality, scan sharing and etc. These characteristics are very important heuristics on data intensive computing and helpful in improving system throughput. In this paper, we firstly design a novel scheduling model termed as Tasks-Job scheduling to overcome the above issues. Furthermore, we propose a locality aware algorithm to improve system throughput. Comprehensive experiments have been conducted to compare the proposed scheduling model and algorithm with state-of-the-art Job-Task based algorithms. The experimental results validate the efficiency and effectiveness of our proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.